

## Agenda

- Zero Energy Building Design and Concept
- Zero Energy Building Reality
- The Final Piece PV
- Cost Implications + Payback









### main level

### upper level



# Zero Energy Building: DESIGN & CONCEPT



# energycost

| <ul><li>Average Building \$1.0</li></ul> | L.00 / ft²/yr |
|------------------------------------------|---------------|
|------------------------------------------|---------------|

• Odyssey Model \$ .44 / ft²/yr

# electrical energy CONSERVATION MEASURES

- LED lighting Lighting power density of .6 W/SF (IECC max allowable is 1.2 W/SF)
- Skylights w/glare control 2nd Level collaboration spaces, commons areas, and multi-purpose room
- Lighting Control System Occupancy sensors, daylight harvesting, dimming, and scene control
- Task tuning and lumen maintenance
- Lighting Controls Commissioning and Retro-commissioning
- Transformers Aggressively sized, energy efficient, energy efficient at lower loading levels
- Wiring System Shared neutrals in lieu of dedicated neutrals
- Plug Load Switching Computer classrooms, vending machines, and drinking fountains
- Treated the power quality of the facility.

# mechanical energy conservation measures

- Improved Envelope
- Ground Source Heat
- Thermal Displacement Air Distribution
- Heat Recovery of Ventilation Air
- Economizer Cooling
- Ground Loop Free Cooling
- IDEC Cooling
- Demand-Limiting Boiler
- Demand-Controlled Ventilation

# savings

- Better building insulation
  - Roof
  - Walls
  - Windows
  - Leakage
- Heating energy use savings







### **EXCEPTIONALLY LOW ENERGY USE**

# fewest PV panels needed



# Zero Energy Building: REALITY

# WHATISA zero energy building

U.S. Department of Energy (DOE) Releases "A Common Definition of Zero Energy Buildings" which states:

...a Zero Energy Building (ZEB) is "an energy-efficient building where, on a source basis, the actual delivered energy is less than or equal to the on-site renewable exported energy"



Table 1 - National Average Source Energy Conversion Factors

| Energy Form                           | Source Energy<br>Conversion Factor (r) |
|---------------------------------------|----------------------------------------|
| Imported Electricity                  | 3.15                                   |
| Exported Renewable Electricity        | 3.15                                   |
| Natural Gas                           | 1.09                                   |
| Fuel Oil (1,2,4,5,6,Diesel, Kerosene) | 1.19                                   |
| Propane & Liquid Propane              | 1.15                                   |
| Steam                                 | 1.45                                   |
| Hot Water                             | 1.35                                   |
| Chilled Water                         | 1.04                                   |
| Coal or Other                         | 1.05                                   |

Source energy would be calculated using the following formula:

$$E_{source} = \sum_{i} (E_{del,i} r_{del,i}) - \sum_{i} (E_{exp,i} r_{exp,i})$$

Where

 $E_{del,i}$  is the delivered energy for energy type i;

 $E_{exp,i}$  is the exported on-site renewable energy for energy type i;

 $r_{del,i}$  is the source energy conversion factor for the delivered energy type i;

 $r_{exp,i}$  is the source energy conversion factor for the exported energy type i;

| Odyssey Elemen |                  |                 |                     |          |
|----------------|------------------|-----------------|---------------------|----------|
|                | elec kwh use     | gas dth use     | PV production       |          |
| Oct            | 23520            | 28              | 44240               |          |
| Nov            | 23880            | 20              | 28920               |          |
| Dec            | 34400            | 51              | 21360               |          |
| Jan            | 21520            | 42              | 5960                |          |
| Feb            | 25840            | 41              | 8720                |          |
| Mar            | 34200            | 38              | 26760               |          |
| Apr            | 26560            | 31              | 34960               |          |
| May            | 24680            | 18              | 51640               |          |
| Jun            | 19720            | 10              | 56440               |          |
| Jul            | 13000            | 6               | 56280               |          |
| Aug            | 16360            | 5               | 66360               |          |
| Sep            | 19840            | 8               | 51120               |          |
| Total          | 283520           | 298             | 452760              |          |
|                |                  |                 |                     |          |
|                | source elec kbtu | source gas kbtu | site renewable kbtu | Net kbtu |
| ZEB calc       | 3045430          | 324820          | 4863322             | -1493071 |

### Review of Odyssey Elem Energy 12 months

#### October 2014 through September 2015

|                                           | Building<br>Square Feet | Site EUI<br>Kbtu/sq.ft. | Metric Tons<br>CO2<br>Emmissions/<br>1000 sq.ft. | ECI<br>Cost/sq.ft. * | Metric Tons<br>CO2<br>Emmissions | Metric Tons<br>CO2<br>Emmissions<br>after PV<br>offset |
|-------------------------------------------|-------------------------|-------------------------|--------------------------------------------------|----------------------|----------------------------------|--------------------------------------------------------|
| Energy Model Elem 60<br>Design Building   | 86,898                  | 21.8                    | 3.87                                             | \$0.48               | 336                              | 17                                                     |
| Odyssey actual usage                      | 84,758                  | 17.1                    | 2.88                                             | \$0.36               | 244                              | -75                                                    |
| Energy Model Elem 60 Baseline (code bldg) | 86,898                  | 43.8                    | 6.05                                             | \$0.77               | 526                              | 526                                                    |

<sup>\*</sup> Costs are before PV and based on Utah Average Cost per Energy Information Administration (EIA)

### Review of 3 New Schools12 months with PV

|                    | Building<br>Square Feet | Site EUI<br>Kbtu/sq.ft. | Cost/sq.ft. |  |  |
|--------------------|-------------------------|-------------------------|-------------|--|--|
| Odyssey Elem       | 84,758                  | 3.34                    | \$0.20      |  |  |
| Canyon Creek Elem* | 84,758                  | 12.33                   | \$0.48      |  |  |
| Kay's Creek Elem*  | 84,758                  | 20.74                   | \$0.32      |  |  |

<sup>\*</sup> Not a full year of PV production.

# The Final Piece: PHOTOVOLTAIC ARRAY



## lessons learned&PITFALLSTOAVOID

Paying for the Photovoltaic Array

Sizing the Photovoltaic Array

Additional Equipment/Hidden Costs

Control Issues

# cost implications + PAYBACK

# cost implications

### Typical Elementary School

Mechanical Cost / SF: \$25.50 Electrical Cost / SF: \$23.10

Cost to Operate: \$1.00 / SF / Year Total Cost First Year: \$80,000 / Year

### **COST IMPLICATIONS**

### Typical Davis School District Elementary School

Mechanical Cost / SF: \$25.80 Electrical Cost / SF: \$19.90

Cost to Operate: \$0.79 / SF / Year Total Cost First Year: \$59,150 / Year

### **cost** IMPLICATIONS

### **Endeavour Elementary School**

Mechanical Cost / SF: \$29.40 Electrical Cost / SF: \$19.90

Cost to Operate: \$0.59 / SF / Year Total Cost First Year: \$44,150 / Year



### **COST IMPLICATIONS**

### **Odyssey Elementary School**

Mechanical Cost / SF: \$35.40 Electrical Cost / SF: \$19.80

### Model

Cost to Operate: \$0.44 / SF / Year Total Cost First Year: \$37,268 / Year

#### Actual

Cost to Operate: \$0.36 / SF / Year Total Cost First Year: \$30,268 / Year **DA1** Doug Anderson, 9/11/2018







