We Partner to Build the New CLEAN ENERGY ECONOMY

Kevin Emerson, MSc, LEED GA Energy Efficiency Program Director

Session 1: Background & the Zero Energy Building Market

Buildings & Energy Consumption in Utah

Source: Utah's Energy Landscape, Utah Geological Survey, 2016 http://ugspub.nr.utah.gov/publications/circular/c-121.pdf

Buildings & Climate Change

Salt Lake City Community Greenhouse Gas Emissions Inventory (2015)

Source: Climate Positive 2040, Salt Lake City Department of Sustainability, 2016 http://www.slcgreen.com/climatepositive

Local Air Pollution Sources in Utah (Typical Winter Day)

Source: 1-Utah Division of Air Quality (2013); 2-Utah Division of Air Quality presentation to Utah Clean Air Action Team (July 2014); 3-Envision Utah (2015)

Energy Efficiency Improvements from ASHRAE 90.1

Source: Building Codes Assistance Project, 2016 http://bcapcodes.org/topics/development/

Residential Solar is at "Grid Parity"

Source: GTM Research, Feb. 2016: http://www.greentechmedia.com/articles/read/GTM-Research-20-US-States-at-Grid-Parity-for-Residential-Solar

UTAH SOLAR MARKET: Homes & Businesses with Solar

Source: Rocky Mountain Power 2017 Net Metering Report https://psc.utah.gov/2017/05/12/docket-no-17-035-31/

What is a Zero Energy Building?

"Generally speaking, a zero energy building produces enough renewable energy to meet its own annual energy consumption requirements, thereby reducing the use of nonrenewable energy in the building sector."

- U.S. DOE

Source: U.S. DOE, A Common Definition for Zero Energy Buildings (September 2015) https://www.energy.gov/eere/buildings/downloads/common-definition-zero-energy-buildings

ILFI Zero Energy Certification

- Performance based (12 mo. of utility data)
- Applicable to commercial, single-family, multi-family, institutional buildings

- Third-party certification
- Low energy use intensity and 100% on-site renewable energy generation
- No on-site combustion is allowed

ILFI Zero Carbon Certification

- Performance based (12 mo. of utility data)
- Same wide applicability
- Third-party certification

- Best-in-class energy efficiency (28 kbt/ft²/year in Climate Zones 3 and 6 or 32 kBtu/ft²/year in Climate Zone 5)
- 100 percent of energy offset with on- or off-site renewable energy generation
- On-site combustion is allowed for existing buildings

Source: https://living-future.org/zero-carbon-certification/ (2018)

ILFI Third Party Certifications

Carbon neutral building with top tier efficiency

- 100% building energy load offset with on- or off-site renewables
- Best-in-class energy efficiency required
- Performance based
- For existing buildings, combustion allowed

Building with world class efficiency and characteristics, reinforcing a fossil fuel free future

- 100% building energy load offset with on-site renewables, driving efficiency
- Pathway for premium off-site renewables for high energy building types
- Performance based
- No combustion allowed

Summit of energy related aspiration and attainment

- Net positive
- 105% building energy load offset with on-site renewables, driving efficiency
- Resilient energy systems
- Pathway for premium off-site renewables for high energy building types
- Performance based
- No combustion allowed

Summit of holistic aspiration and attainment; fully restorative

- Net positive
- 105% building energy load offset with on-site renewables, driving efficiency
- Resilient energy systems
- Pathway for premium off-site renewables for high energy building types
- Performance based
- No combustion allowed
- Fully integrated design
- Stronger focus on naturally (rather than electrically) derived services

Source: https://living-future.org/net-zero/certification/ (2018)

Common "Zero Energy" Terms

Common Terms	What does it mean?
Zero Energy Building "Certification"	Awarded third-party certification by ILFI
Zero energy "Verified"	12-months performance data verified by NBI
Zero energy "Emerging"	In process toward zero energy
"Near net zero," "zero energy capable," "zero energy ready"	Ultra-low energy, no renewables, no "zero energy" goal

Number of Zero Energy Buildings 482

Fig 2. There are now 67 ZE Verified and 415 ZE Emerging projects documented by NBI.

Source: New Buildings Institute (January 2018): <u>https://newbuildings.org/resource/2018-getting-zero-status-update/</u>

Building Ownership Type Distribution

Fig 8. Buildings owned by for-profit companies now making up 26% of the List.

Source: New Buildings Institute (January 2018): https://newbuildings.org/resource/2018-getting-zero-status-update/

2018 Buildings List Project Locations

Fig 3. ZE Projects by region and state/province. The legend shows regional growth trends in projects since our 2014 List.

Source: New Buildings Institute (January 2018): https://newbuildings.org/resource/2018-getting-zero-status-update/

The Growing Zero Energy Building Market

Chart 1.1 Total Zero Energy Building Revenue, World Markets: 2014-2035

(Source: Navigant Research)

Source: Navigant Research (2014) as reported by Construction Dive <u>https://www.constructiondive.com/news/report-global-net-zero-energy-building-market-to-reach-14t-by-2035/433521/</u>

Zero Energy Building Resources

Organizations

- International Living Future Institute <u>https://living-future.org/</u>
- New Buildings Institute | Zero Net Energy <u>http://newbuildings.org/hubs/zero-net-energy/</u>

Certification

ILFI Net Zero Energy Building Certification
<u>https://living-future.org/net-zero/certification/</u>

Reports of interest

- A Common Definition for Zero Energy Buildings (2015) https://www.energy.gov/eere/buildings/downloads/common-definition-zero-energy-buildings
- 2018 Getting to Zero Status Update and List of Zero Energy Projects <u>https://newbuildings.org/resource/2018-getting-zero-status-update/</u>
- Cost Control Strategies for Zero Energy Buildings <u>https://buildingdata.energy.gov/cbrd/resource/1655</u>
- The Design-Build Process for the Research Support Facility <u>https://buildingdata.energy.gov/cbrd/resource/1309</u>

Zero Energy Case Studies

Session 2: Survey of Zero Energy Building Systems

Survey of Zero Energy Building Systems

Highlight common practices in key energy systems:

- Building Envelope
- Lighting
- HVAC & Ventilation
- Plug Load
- Renewable Energy

- Nine buildings
- Zero Energy, Zero Energy Ready
- 2 in Canada
- Climate Zones 1, 3, 4, 5
 - Tribal Headquarters
 - Public Schools
 - Multifamily Housing
 - Bank
 - U.S. Federal Government
- Sources
 - New Buildings Institute
 - U.S. Department of Energy

Building Envelope

Goals: High insulation levels, high performance windows, and conscious efforts to reduce thermal bridging and infiltration

Findings:

- Walls: R-14 + thermal mass, R-22, R-24, R-30, R-38 (SIPS)
 - Blown-in cellulose
 - Three layers of fiberglass batts
 - 2" of rigid insulation (R-14) with 3" of concrete on outside, 6" of concrete on inside for thermal mass
- Ceiling: R-30, R-35, R-60 (SIPS)
- Windows: U-factor 0.24-0.30; SHGC 0.26 (low-e, argon gas, double glaze)
- Lower window-to-wall ratio 25%
- Air tight construction

Lighting & Daylighting

Goals: Daylighting as the primary source of illumination, plus LED lighting and controls **Findings**:

- Daylighting
- Open floor plan to get light into building
- Orientation
- Skylights, Solatubes
- Louvered sun shades to reflect light onto ceiling
- Occupancy sensors turn off lighting when not in use
- Light sensors turn off lighting/dim LEDs when daylight is high
- Manual switches to turn lights off
- All lighting turned off at end of day by Building Automation System
- LED task lighting

A light louver dayighting system reflects sunlight to the ceiling, creating an indirect lighting effect. Fixed sunshades limit excess light and glare. *Illustration from RNL*

HVAC & Ventilation

Goals: Reduce energy consumption needed for heating, cooling, and ventilation

Findings:

- Ground source heating
- Indirect-direct evaporative cooling
- Technologies such as packaged roof top units are almost totally absent
- Use waste heat (from mechanical systems to heat boilers)
- Operable windows
- Variable flow fans
- Demand-control ventilation
- Preheats air with "transpired solar collector"

Diagram showing how the transpired solar collector works. Illustration from RNL **Plug Load**

Goals: Attention to plug load equipment like high-efficiency appliances and computers, and plug load controls

Findings:

- Careful appliance selection, including printers, copiers, laptops, VOIP phones, task lighting
- Occupancy sensors to put inactive workstations to sleep
- Eliminate the cooler on the drinking fountain
- Make energy systems visible to increase awareness and encourage conservation

FIGURE 4 Impact of Reduced Plug Load

The cumulative result of these strategies was a 31.8% reduction in plug loads. This reduction does not include additional savings from advanced server technologies, unoccupied hour controls, or higher efficiency kitchen appliances and office equipment. *Figure by Stacy Buchanan, NREL*

Renewable Energy

Goal: On-site renewable energy sufficient to meet/exceed the annual energy delivered

Findings:

- Solar PV was part of all but 1 project
- Helped get many projects to EUI 0 or negative EUI

ZEB Case Studies Reviewed

- Kinard Core Knowledge School LINK
- Wampanoag Tribal Headquarters LINK
- Bagatelos Architectural Glass Systems LINK
- The North Face/ VF Outdoor LINK
- Dr. David Suzuki Public School LINK
- zHomes Multifamily project LINK
- TD Bank LINK
- Turkey Foot Middle School LINK
- U.S. Department of Energy Field Office LINK

Case studies from New Buildings Institute and U.S. Department of Energy

Zero Energy Case Studies

